If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+x=1300
We move all terms to the left:
3x^2+x-(1300)=0
a = 3; b = 1; c = -1300;
Δ = b2-4ac
Δ = 12-4·3·(-1300)
Δ = 15601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{15601}}{2*3}=\frac{-1-\sqrt{15601}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{15601}}{2*3}=\frac{-1+\sqrt{15601}}{6} $
| 2x+1+x+4=x+16+ x | | 3x+17+.5x+5=180 | | 3x-5x-2=2(-1-x) | | X+3y=134 | | -v+177=240 | | -2.3/4.8=c | | 2/15*x=2/45 | | 12x-5=37-x | | 277=49-u | | -y+295=103 | | P+16p=8 | | 17=3(p−5)+8 | | 9x/2=3(x+15) | | x-24+x=23 | | 8x+3=23+3x | | x+(x)(.06)=106 | | 3x/2+5/8=x/4 | | 22g-4=2g+6 | | 172-y=122 | | 4-9x²=0 | | x^2-4x+22=5 | | 5p+13=33 | | (5n-12)^3=7 | | q+8=-q+6+2q | | 2n-(1/n)=100 | | 3y–4=–7 | | 4(6/8x)=115 | | x-21+x=71 | | 2x-12-(3x+18)=0 | | 6-6v+2=4(8-4v)+6(2v-2) | | 4^x-2^(x+1)=15 | | 9.08x+3.55(7x-3)=12.07x+0.5612 |